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RECTILINEAR DISLOCATION IN AN ANISOTROPIC PLATE 

E . P .  F e l ' d m a n  
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A solution has been found to the problem of calculating the stress and 

displacement fields caused by a rectilinear dislocation in an aniso- 
~ropic elastic plate. Special cases of anisotropy have been found with 
solutions represented by elementary fanetions. 

Certain problems in describing crystal plastic deformation phenom- 
ena make it vital to know the fields of the elastic stresses and dis- 
placements caused by an individual dislocation in a bounded crystal. 
lr is interesting to study the effect of crystal boundaries on these fields 
with a simple model which approximates fairly closely to experimental 
conditions. 

The model selected is shown in Fig. 1. A dislocation with a 
Burgers vector b (bl, bz, ba) is situated in an infinite elastic anisotropic 
piate of thickness 2h. The dislocation line is parallel to the plate 
boundaries. The following restriction is introduced in relation to the 
plate's elastic properties: the medium has a plane of elastic symmetry 
perpendicular to the dislocation line. The selection of the coordinate 
system and position of the dislocation are shown in Fig. 1. The re- 
quirement is to find the stresses and displacements at an arbitrary 
point in the plate. 

One limited special form of this problem has been solved by 
Kroupa [1]. The limitations which he introduced are as follows: the 
medium is isotropic, the dislocation is at the precise center of the 
band and the Burgers vector has only one component b 2 differing from 
zero (the same coordinates were chosen in [1] as in Fig. 1). 

Thus Kroupa's results can be obtained from the results of the 
present work as a special case. Other special cases arising from this 
problem are those concerning the elastic stress and displacement fields 
caused by a dislocation in anisotropic semi-bounded [2 3 and bounded 
[3] media. 

It is immediately apparent that the problem is a plane one, in the 
sense that the fields to be found do not depend on coordinate z. Since 
the medium has a plane of elastic symmetry perpendicular to the dis- 
location line, it is clear from [4] that the system of stresses and strains 
in such a medium can be divided into two independent subsystems. The 
first of these is plane deformation with stress components Oxx, Oyy 
and Oxy differing from zero and displacement vector components u x 
and Uy, the second is "antiplane" deformation with stress components 
Oxz and Oy z differing from zero and the displacement vector com- 
ponent Uz. 

In the case under examination, the plane deformation is caused 
by the Burgers vector edge components b x and by and the antiplane 
deformation by the screw component b z. The solution is therefore 
divided into two stages, corresponding to edge and screw disloea~ions. 
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Fig .  1 

w E d g e  d i s l o c a t i o n  in  an  a n i s o t r o p i c  p l a t e .  The  
s t r e s s  and  d i s p l a c e m e n t  f i e l d s  c a u s e d  by  an  e d g e  d i s -  

l o c a t i o n  in an  a n i s o t r o p i c  p l a t e  g i v e  r i s e  to a p l a n e  

p r o b l e m  in a n i s o t r o p i c  e l a s t i c i t y  t h e o r y .  F o r  t he  s a k e  

of  c l a r i t y ,  we  wi l l  r e f e r  s u b s e q u e n t l y  to  the  s t r e s s  

f i e l d  and  u s e  t h e  r e s u l t s  a n d  n o m e n c l a t u r e  of S. G. 

L e k h n i t s k i i  [4]. The  s t r e s s  t e n s o r  c o m p o n e n t s  in a 
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p l a n e  a n i s o t r o p i c  e l a s t i c i t y  p r o b l e m  can  be r e p r e -  

s e n t e d  a s  f o l l o w s :  

( ~  = - -  2Re [ih2]1 (h) § b%~/-. (z~)], 

(~vy = - -  2Re [/1 (zl) @ /:  (z2)], 

z= = x + ~ g, ( a=  l, 2). (1.1) 

H e r e  Pl and  P2 (as we l l  as  Pl and  P2) a r e  t he  r o o t s  
of a f o u r t h - d e g r e e  a l g e b r a i c  e q u a t i o n ,  t he  c o e f f i c i e n t s  

of w h i c h  a r e  l i n k e d  wi th  the e l a s t i c  m o d u l u s  t e n s o r  

c o m p o n e n t s  of the  m e d i u m .  
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Fig .  2 

The d i s p l a c e m e n t  v e c t o r  c o m p o n e n t s  a r e  e x p r e s s e d  

by the  f u n c t i o n s  f l ( z l ) ,  f2(z2) and  the  e l a s t i c  m o d u l i  

of t h e  m e d i u m  [3]. The e s s e n c e  of the  p r o b l e m  is to  

d e t e r m i n e  the  f u n c t i o n s  f l ( z l )  and f~ (zz )  , and  to s o l v e  

it we  s e e k  the  s t r e s s e s  in the  f o r m  

~ = ~ o +  ~ .  (1 .2)  

w h e r e  the  f i r s t  t e r m  c o r r e s p o n d s  to d i s l o c a t i o n  in an  

u n b o u n d e d  m e d i u m  [3] and  the  s e c o n d  a l l o w s  f o r  t h e  

p r e s e n c e  of b o n d i n g  s u r f a c e s .  

The  s t r e s s e s  ~ik* can  be  e x p r e s s e d  a c c o r d i n g  to 

(1.1) by  the  f u n c t i o n s  f o f f ( z ~ ) ,  w h i c h  a r e  r e g u l a r  in  

t h e  s t r i p  , h  -< y -< h.  

The  b o u n d a r y  c o n d i t i o n s  in t h i s  c a s e  c o n s i s t  of t he  

d i s a p p e a r a n c e  of s t r e s s  c o m p o n e n t s  (~i~ (i = 1, 2) on 

the  p l a n e s  y = •  

~ *  (x, h) = - ~ . ~ ~  (z,  h), 

~ *  (x, - -  h) = - -  ~:2 ~ (x, - -  h), 

~1~* (*, h) = - -~1~~ ( . ,  h), 

~12" (x, -- h) = -- ~i~~ (z,  -- h). ( ] . 3 )  

Thus  we a r r i v e  a t  the  f o l l o w i n g  p r o b l e m  in the  

t h e o r y  of  f u n c t i o n s  of a c o m p l e x  v a r i a b l e :  to f i nd  the  

two f u n c t i o n s  f l * ( z l )  a n d f 2 * ( z 2 ) w h i c h  a r e  r e g u l a r  in 
the  s t r i p  - h  < y _< h and  w h i c h  s a t i s f y  (having  r e g a r d  

to (1.1)) the  g i v e n  b o u n d a r y  c o n d i t i o n s  (1.3). 

Th i s  p r o b l e m  w a s  s o l v e d  in g e n e r a l  f o r m  (i. e. , 

w i t h  a r b i t r a r y  f i x e d  l o a d s  a l o n g  the  e d g e s )  by  K u f a r e v  

a n d  Sv ek l o  [5]. The  l i m i t a t i o n s  i m p o s e d  on t h e s e  l o a d s  

in [5] l i e  p r i n c i p a l l y  in the  e x t e n t  to w h i c h  t h e y  can  be  

r e p r e s e n t e d  a s  F o u r i e r  i n t e g r a l s .  In a d d i t i o n ,  t h e  
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m e t h o d  s u g g e s t e d  in [5] w a s  u t i l i z e d  in [6],  a n d  g a v e  

t h e  s o l u t i o n  o f  t h e  s e c o n d  m a i n  p r o b l e m  a n d  of  c e r t a i n  

p r o b l e m s  in a n i s o t r o p i e  s t r i p  e l a s t i c i t y  t h e o r y .  
S i n c e  t h e  F o u r i e r  t r a n s f o r m s  of  t h e  b o u n d a r y  l o a d s  

a r e  e l e m e n t a r y  f u n c t i o n s  ( s e e  b e l o w )  in  t h e  s i t u a t i o n  

w h i c h  is  o f  i n t e r e s t  to  u s ,  i t  i s  p o s s i b l e  to o b t a i n  a 

s o l u t i o n  in e x p a n d e d  f o r m  by  f o l l o w i n g  t h e  e s s e n t i a l  

f e a t u r e s  of  [5]. F o r  t h i s  p u r p o s e  w e  e x a m i n e  t h e  

F o u r i e r  r e p r e s e n t a t i o n s  o f  t h e  f u n c t i o n s  

| ~ _~:. 
]j* (Z 9 ( / =  1, 2), ]i* (Zi) = - ~  ~ ]J* (k) e Mk.  (1 .4)  

- - c o  

Having r e g a r d  to (1.1), we then obtain f r o m  (1.3) 
a s y s t e m  o f  e q u a t i o n s  to  f i n d f j * ( k )  (j - 1; 2), 

Jr* (k) e-i~'~ ,h + / 2 *  (~) e-~'~"~ + 

+ ] ,*  ( - -  k) e -~',l~ 4- /~* ( - -  k) e -t@,~ = - -  P t  (k), 

/ ,* (k) e ik~,h -[- /2" (]r e i ~ h  4- 

+ 1,* ( - -  k) e i@,h 4- A* ( - -  k) e ik~,h = - -  P~ (Ir 

~1/1" (]r e -i~w'n 4- [tg]~* (k) e -ikI~,h 4- ~ / r *  ( - -  k) e -ik~,h -~ 

4- ~a~/~* ( - -  k) e -i~'Gn = Ps (k) , 

~tr/~* (k) e i~.',n --}- ~%]~* (k) e ~~n + ~hA* ( - -  k) e ~,~,~ 4- 

+ ~ / * *  ( - -  k) e i~;,h = / 0 4  (k). (1 .5)  

H e r e  P i ( k )  (i = 1 , 2 ,  3 , 4 )  a r e  t h e  F o u r i e r  t r a n s -  

f o r m s  of  t h e  f u n c t i o n s  in  t h e  r i g h t  s i d e s  of  E q s .  (1 .3) .  

If  w e  t a k e  a c c o u n t  o f  t h e  e x p l i c i t  f o r m  of  f u n c t i o n s  

(ri2 ~ (x, y )  (i = 1 , 2 )  [3] a n d  in  v i e w  of  t h e  f a c t  t h a t  w e  

s e l e c t  a s  p~ a n d  P2 t h o s e  c h a r a c t e r i s t i c  e q u a t i o n  r a d -  

i c a l s  f o r  w h i c h  I m  p~ > 0 a n d  l m  P2 > 0, w e  o b t a i n  f o r  

ti~ (k) = - - ~  -oo- ~ (x' h) eUt~dx 

t h e  f o l l o w i n g  e x p r e s s i o n :  

Pt (k) = 

~/~ ~ g2-~.~ [~,~e ~'(~"-h) + ~j~.(u.-~,)l ,  ~ < o, (1 .6)  
" --  ~h i V2-~  if.re i~;'(u.-~) + ~d~;,(v.-~)l, k > O, 

whe re  Xj = Mjkd k and the va lues  of Mjk and d k a r e  
l inked  with the e l a s t i c  modul i  and the B u r g e r s  v e c t o r  
by  the we l l -known  r e l a t i o n s h i p s  g iven  in [3] ( s u m m a -  
t ion is r e p r e s e n t e d  h e r e  and subsequen t ly  by t w i c e -  
r e p e a t e d  Roman  indices) .  The e x p r e s s i o n s  for  the 
r e m a i n i n g  F o u r i e r  f o r m s  of  P j ( k )  (j = 2, 3, 4 ) a r e  

s i m i l a r  to  e x p r e s s i o n  (1.6) .  
I t  i s  a p p a r e n t  f r o m  (1.6)  a n d  (1 .5)  t h a t  t h e  f u n c t i o n s  

f~* ( k )  a n d f z * ( k )  h a v e  d i f f e r e n t  a n a l y t i c a l  e x p r e s s i o n s  

f o r  k < 0 a n d  k > 0. T h e s e  e x p r e s s i o n s  w i l l  b e  d e s i g -  

n a t e d f l ,  2-(k)  a n d f l ,  2+(k) r e s p e c t i v e l y .  T h e  s o l u t i o n  
f o r  s y s t e m  (1 .5)  c a n  t h e n  b e  w r i t t e n  a s  f o l l o w s :  

+ ( / § \ 
i aL~(k) = t = ~ A L ~ ( k  )) (1 .7)  /G(k) = +2 

Here  A(k) is the d e t e r m i n a n t  for  s y s t e m  (1.5), and 
the e x p r e s s i o n  in b r a c k e t s  r e p r e s e n t s  the d e t e r m i n a n t s  

o b t a i n e d  f r o m  A(k)  w h e n  t h e  f i r s t  o r  s e c o n d  c o l u m n s  

a r e  r e p l a c e d  by  f r e e  t e r m s  f r o m  E q s .  (1.5) .  

T h u s ,  f o l l o w i n g  (1.4) ,  we  f i n d  

0 - COA + 
* i I A1.2e-i~z1,,dk@ i I ] l , n ( z ' , ~ ) = - - u  - ~ ~-~ ~ e - i ~ " l ' ~ d k . ( 1 . 8 )  

F o r  the funct ions d e t e r m i n i n g  the to ta l  s t r e s s  f ie ld  

/j (zj) = /d  (zj) + / j *  (=j), (i = 1,2). 

Here  f j~  c o r r e s p o n d  to a d i s loca t ion  in an un -  
bounded med ium [3], and a f t e r  e l e m e n t a r y  e o n v e r -  
s ions  the fol lowing r e p r e s e n t a t i o n s  a r e  obta ined:  

(zo 

i ~ Aj + - i~ : . . .  
] ~ ( z i ) = ~  o - x - e  m~, Y2>Yo 

--oo (1=1,2). 
c o  

i I A7 e-~:Jdk' <2yo (1 .9)  
- - c o  

As wil l  be shown below, the i n t eg ra l s  in f o r m u l a s  
(1.9) converge ,  so the funct ions f j  (zj) d e t e r m i n e d  by 
these  f o r m u l a s  e x i s t  and p rov ide  a solut ion to the 
p r o b l e m .  

w Study of integral  convergence :  some  spec ia l  cases .  Examina- 
tion of the determinant A(k), the integrand denominator in formulas 
(1.9), will be of vital importance in all subsequent research. This 
determinant  will now be written in expanded form, 

- Csinkh(~,--~2)sinkh(~1--F2) 
A ( k )  = 4 I t q  - -  ~ 12 [ ~ ,  - -  n z  I ~ I -  - -  - -  - - - - = - - - - - - -  - -  

si nkh (i~l--~t2) sin kh (~1 --  ~2 ) 1" (2.1) 
if k is regarded as variable in a complex range, A(k) is an in- 

tegral function having innumerable zeros, only one of which (k = 0) 
lies on the real axis. Elementary calculations show that k = 0 is a 
fourth-order zero of function A(k). 

The integrand numerators in expressions (1.9) are also integral 
functions, and it is therefore easy to show that k = 0 will be a first- 
order zero for these functions. 

Thus the integrands in expression (1.9) have but one singular point 
on the reaI ax i s - the  coordinate origin, and this singular point is a 
third-order pole. 

In addition, a direct check satisfies us that the integrand in the 
upper integral of formula (1.9) decreases exponentially as k -'~ • 
along the real axis, if Y0 <- Y < h, and the same is true of the lower 
integral if --h -< y -< Y0. ConsequentIy, these integrals converge at 
infinity. 

Close to the point k = 0 these integrals diverge, both in the or- 
dinary sense and in the sense of the Cauchy principal value. We will 
now establish the sense in which the convergence of these integrals in 
the vicinity of zero can be understood. For the sake of clarity we will 
refer to one of these integrals. The Laurent series for the integrand in 
(1.9) in the vicinity of zero has the following form: 

"~-8 -r- T2 Ts -~- + - ~  + . . . .  ~1~o. 

If we now integrate our function along the real axis with the dis- 
carded interval (--6,~), 6 > 0, s > 0, linking 6 with ~ so that 

272 6=e(i-~-~-1 e) -r 

and then making s (and thus 6) tend to zero; this ensures convergence 
of the integral under examination at zero. When 6 and 8 are linked 



J O U R N A L  O F  A P P L I E D  M E C H A N I C S  AND T E C H N I C A L  P H Y S I C S  57 

in this way they are infinitely small; thus convergence of the integrals 
can be regarded as established, in the sense defined above. 

We wili now pass on to examine the possibilities of calculating 
the (1.9) integrals in elementary functions. 

Analysis of the dislocation stress field when the functions ~cj (zj) 
which determine this field are given in integral form (1.9) is extremely 
difficult. As a result, the basic problem is whether the (1.9) integrals 
can be expressed in explicit form by elementary functions. 

in calculating the integrals it is naturai to reSort to contour in- 
tegxation in the complex domain, but the first essential for this is to 
establish the A(k) function zero distribution with complex k's, since 
these zeros are the integrand poles. Since A(k) has innumerable zeros, 
when we calculate the integral we obtain a series in which each term 
corresponds to the residue of the integrand at the corresponding denom- 
inator zero. 

in general, however, i . e . ,  with aribtrary Pl and ~z, it is impos- 
sible even to establish the A(k) zero distribution, not to mention sum- 
mation of the corresponding series. It is therefore natural to try to 
fiud the relationships between parameters g~ and #z at which the (1.9) 
integrals can be calculated in explicit form. 

It is clear from [1,7] that in the isotropic situation, which can be 
obtained quite simply from (1.9) and (1.1) by passing to the limit as 
~1 ~ i, ~z --~ i, the integrals corresponding to (1.97 cannot be taken 
in elementary functions. A curious feature here is that it is possible 
to indicate those relationships between t~, and ~z, i . e . ,  those cases 
of anisotropy, where the evaluation of the integrals is possible. 

This occurs if A(k) becomes a periodic function with purely ima- 
ginary period; this in turn is possible when parameters ~1 and Pz are 
purely imaginary: gl = is1, ~z = is2, and, in addition, the ratio (s 1 + 
+ sz)/(st - sz) is a rational number. It is easy in these cases to select 
standard integration contours so that integral evaluation is reduced to 

calculating the residues at a finite number of integrand poles. 
We will illustrate this reasoning with what is perhaps a simpler 

example, where 

(81 -~- 82 ) / (S  1 - -  82) = 2.  (2.27 

:n this case we have from (2.1) 

A (k) = -- t6 (st - -  s2) ~" sh~kh (& --  s~). (2.3) 

AS is apparent from expanding the appropriate determinants, the 
integrand numerators have the following form: 

s h  kh ( s  I - -  s~) [ a l e  ~ , k  § . , . ~ -  ~t e ~ . k ] .  

Here cq and ~j do not depend on k. Thus we find that the caIcula- 
tions are reduced to the evaluation of integrals of the type 

efb# dk _ 
sh ~ kh (s~ - -  s~) 

- - c o  

and this in turn is done by integration along a standard contour, as 
shown in Fig. 2. 

As might be expected, it becomes apparent during the calculation 
that both the (1.97 integrals represent functions which are analytic 
continuations of each other. 

We present [he result of calculating the determining functions [i(zj) 
for (2.2): 

]1(21) 32(hs),a kl - - - i x - l -  ~ s ( y - - y o )  - -  

.-t :~ is (y - -  YeT) q- - -  4h2s2]eth ,'~h~s (x § ~ 

"zc ~e t ( - -  ia: + l s (3y - -  Yo7 ) 2 - 

--h'Zs~lcth ,-~hs (~ + l i s ( 3 y - - y o ) ~  ihs) - 

3 2 

a 3 ihs) - - h ' s ' l c t h  .%~s ( x + - ~ i s ( g - - y o ) -  ~ -- 

[ ' 1' ' )I --  ~ - - ix  + ~ s ( a y @ y o )  e t h ~  x §  v i s ( b y  =-yo) ", 

t i 

~s (y - -  yo)/ - -  

1 3yo)12eth g 1 - - 3 ~ t [ - - i x §  ~ 8 ( y  4- _ L-~-s ( x §  

- - ~ 2 [ 3 ( - - i x §  + yo))2@ 

n i 
"4- 5h2s21cth . ~  (x-~- -~ is(y § yo) @ ihs)} 

s = s l  - -  s2 .  ( 2 . 4 )  

It can be directly verified that the stress field determined bymeans 
of (2 A) and (1.1) does, in fact, satisfy all the essential conditions, 
i . e . ,  it has the necessary singularity at the point (0, Y0) and the com- 
ponents Oxy and Oyy disappear if y = ~h. The formulas (2.4), together 
with (1.1), permit a complete analysis of the edge dislocations in an 
anisotropic plate if, of course, condition (2.2) is fulfilled. Thus it 
is easy to establish that as x ~ • the stresses diminish, generally 
speaking, as 

[ x \ 2  
const \ ~ )  exp - - [ n x  I - - ~ .  

As a characteristic example, we give the results of calculating 
the interaction force of two dislocations with identical Burgers vectors 
(0, b, 0) situated at distance x in the median plane. According to 
Eshelby [8], the force of interaction between two dislocations is de- 
termined by the stress field set up by one of them at the point where 
the other is situated: 

F i = eik/~ Zlm bm. (2.5) 

Here F is the force, aim the unit antisymmetrie third-order tensor, 
v the unit vector of the tangent to the dislocation line, and b the 
Burgers vector. Summation is indicated by twice-repeated indices. In 

the case under examination, the oniy component of F x which differs 
from zero takes the form 

bd ~:c 
Fx 2 (hs) 8 (2x2 -- h~s2) csch h~ (2.6) 

where d is a value connected with the Burgers vector and the elastic 
constants [8]. Since the parameter s is unity in order of magnitude, 
formula (2.6) shows that the force of interaction between dislocations 
of the type indicated changes sign at distance x ~ h, whereas in un- 
bounded and semi-bounded media similar dislocations repel whatever 
the distance between them. It would be possibie te produce numerous 
interesting examples of the application of formula (2.4), e . g . ,  cal- 

culating the forces of interaction between other types of dislocation, 
calculating "image" forces, e tc . ,  but this is outside the scope of the 
present work. 

To conclude, although formulas (2.4) were obtained by making the 
artificial assumption (2.2) in relation to the Mastic constants of the 
material, it is to be hoped that in view of the stability of the solutions 
of the elasticity theory equations in relation to changes in elastic con- 
stants, the results based on formulas (2.47 wiI1 remain in force for 
materials with other elastic constants. At least, this conclusion holds 
good for materials in which the ratio (s t + s2)/(s t T s2) approximates 2. 
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w Screw dis locat ion in an aniso t rop ic  plate.  As 
has been pointed out, a screw dis locat ion causes  a n t i -  
plane deformat ion  in the plate,  and this deformat ion is 
cha rac te r i zed  by the d i sp lacement  u z and the s t r e s s  
components  ~xz and ~yz" To find these  it is convenient  
to introduce the funct ion ~, which is l inked to the s t r e s s  
components  as follows [9]: 

0r 
~ = 8 ~  ~ (i : ~i 2), (3 .1)  

where Etk e is the unit  t h i r d - o r d e r  a n t i s y m m e t r i c  t e n -  
sor ,  The funct ion r mus t  sa t is fy  the following equa-  
t ion in a med ium containing a screw dis locat ion  with 
a Burgers  vector  b at point r 0- 

i. 0~ = b6(r (3.2) 

where  kikem is the e las t ic  modulus t enso r  of the m e -  
dium. 

The boundary  condit ions a re  the d i sappearance  of 
s t r e s s  component Cry z on the planes y = *h. This con-  
dition can be rep laced  by the condit ion that funct ion 
r reduces  to zero on the reg ion  boundary.  

The p rob lem is solved by making a l i nea r  c oo r -  
dinate t r a n s f o r m a t i o n  according  to the r e l a t ion  

x( = ~kxk i f : i ,  2), (3.3) 

with the r e q u i r e m e n t  that the left  side of Eq. (3.2) is 
conver ted  to a Laplac ian  opera tor  and the in i t ia l  plate 
to a plate  of the same th ickness  and or ien ta t ion .  It is 
easy  to produce this t r a n s f o r m a t i o n  in expl ic i t  form,  

~1i = ~ii -1 IrA, [3~i = (5~i (5 = ~11X2,-- ~,P), (3.4) 

where  A is the de t e rminan t  of the t ensor  kik. 
As a r e su l t  of the convers ion  by fo rmulas  (3.3) and 

(3.4), Eq. (3.2) appears  thus:  

0~, -t- xr b 5 ' 0~'~ ~ - -  ~ ( r ' - r 0 ) .  (3 .5 )  

The boundary  condit ions which funct ion ~ mus t  sa t i s fy  
r e m a i n  unchanged.  

Equat ion (3.5) is sa t i s f ied  by the s t r e s s  funct ion f o r  
a sc rew d is loca t ion  in an i so t ropic  med ium,  and also 
by the e l ec t ro s t a t i c  f ie ld  p ro ten t ia l  set  up by a charged 
f i l ament  in an i sot roptc  medium.  With the boundary  
condit ions indicated,  this equat ion is solved by the 
image method, and the solut ion,  as is a l r eady  known 
f rom [10], has the following fo rm:  

- ~ Re In ch {Vanh  -~ [(x'-- x ( )  + i ( y ' - -  Yo" - -  2h)]} (3 6) 
- -  2n;~, . . ,_  c h { ~ l ~ h - ~ [ ( x ' - - X o ' ) + i ( Y ' " + Y - ~  " " 

The solu t ion  of our  p rob l em is obtained s imply  by 
subs t i tu t ing  the old coord ina tes  for the new, accord ing  
to (3.3) and (3.4). We then obtain 

_ _  I - + 

+ ~ (y - y0 -  2h)l}/• 

x t + +.',o)I>] (3.7) 
, . . l  

F o r m u l a  (3.7) gives the solut ion to our  p rob l em,  
because  fo rmu la s  for  the s t r e s s  components  can be 

readi ly  obtained by different iat ing ~ according to (3.1). 
In addition, the s t r e s s  function for a screw dis locat ion 
in an unbounded an iso t rop ic  medium can be obtained 
f rom (3.7) by pass ing  to the l imi t  as h ~ :r 

In te rp re ta t ion  of the r e su l t  is a lmos t  the same as 
for an i sot ropic  plate,  that is to say, the r e su l t ing  
field in the plate can be regarded  as a field crea ted  in 
an unbounded med ium both by the dis locat ion i tself  and 
by its images at  points which sat isfy  the conditions 

+ / ( g  - go - -  2h)]  = i (1 /2~ -]- k l a )  

(kl=0, +- i, +_2, +_ ...), 

~,l, uh -~[  ] / -hXZ~ ( x ,  - -  x,o) N i (g + y0)l = 

= i(l/~u + k2n) (k2=O, •  + -2~+ . . . ) .  ( 3 . 8 )  

It follows f rom the fo rmulas  that the re f lec ted  d i s -  
locat ions  all  l ie  on the s t ra ight  l ine 

x + tg a (g -- Y0) = 0 (tgu = ~,22/~,12) 

which passes  through the t rack  of the dis locat ion l ine.  
In conclus ion,  I wish to thank A. M. Kosevich for 

his  valuable advice and L. A. Pas tu r  for his  cons tant  
v igi lance and a s s i s t a n c e  in the work. 
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